The original given form of the complex number
is rectangular form.
We'll put the number into the polar
form.
z = a + bi
z =
6-8i
Re(z) = 6 and Im(z) =
-8
The polar form:
z = |z|(cos
t + i sin t)
|z| = sqrt[Re(z)^2 +
Im(z)^2]
|z| = sqrt [(6)^2 +
(-8)^2]
|z| = sqrt (36 +
64)
|z| = sqrt 100
|z| =
10
tan t = Im (z)/Re(z)
tan t
= -8/6
tan t = -4/3
t =
arctan(-4/3)
The polar form of the complex
number z is: z = 10{cos [arctan(-4/3)] + i*sin
[arctan(-4/3)]}.
No comments:
Post a Comment