Thursday, February 12, 2015

Write the polar form of the complex number z given by z=6-8i.

The original given form of the complex number
is rectangular form.


We'll put the number into the polar
form.


z = a + bi


z =
6-8i


Re(z) =  6 and Im(z) =
-8


The polar form:


z = |z|(cos
t + i sin t)


|z| = sqrt[Re(z)^2 +
Im(z)^2]


|z| = sqrt [(6)^2 +
(-8)^2]


|z| = sqrt (36 +
64)


|z| = sqrt 100


|z| =
10


tan t = Im (z)/Re(z)


tan t
= -8/6


tan t = -4/3


t  =
arctan(-4/3)


The polar form of the complex
number z is: z = 10{cos [arctan(-4/3)] + i*sin
[arctan(-4/3)]}.

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...