Wednesday, February 25, 2015

Find the inverse of the function y=e^x+6x using derivatives.

We'll put f(x) = e^x+6x.


By
definition, f'(x)*[f^-1(x)]' = 1


[f^-1(x)]'=
1/f'(x)


f^-1(x) = Integral of
1/f'(x)


We'll calculate f'(x) = e^x +
6


[f^-1(x)]'= 1/(e^x +
6)


We'll calculate the indefinite
integral:


Int dx/(e^x +
6)


We'll put e^x + 6 = t => e^x = t -
6


We'll differentiate:


e^x*dx
= dt


dx = dt/e^x


dx =
dt/(t-6)


Int dx/(e^x + 6) = Int
dt/t*(t-6)


We'll decompose the fraction 1/t*(t-6) in a sum
or differenceof elementary fractions:


1/t*(t-6) = A/t +
B/(t-6)


1 = t(A+B) - 6A


A+B =
0


A = -B


A = -1/6 => B
= 1/6


1/t*(t-6) = -1/6t +
1/6(t-6)


Int dt/t*(t-6) = -Int dt/6t + Int
dt/6(t-6)


Int dt/t*(t-6) = (1/6)(Int dt/(t-6) - Int
dt/t)


Int dt/t*(t-6) = (1/6)(ln(t-6) - ln
t)


Int dt/t*(t-6) =
(1/6){ln[(t-6)/t]}


Int dx/(e^x + 6) = (1/6){ln[(e^x)/(e^x +
6)]} +C


The inverse function is f^-1(x) =
{ln[(e^x)/(e^x + 6)]}/6

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...