The identity to be proved is: cos(theta) / 1 - sin(theta)
= sec(theta) + tan(theta)
I'll rewrite this with x used
instead of theta
We have to prove: cos x/ (1 - sin x) = sec
x + tan x
Let's start from the right hand
side
sec x + tan x
substitute
sec x = 1/cos x and tan x = sin x / cos x
=> 1/ cos
x + sin x / cos x
=> (1 + sin x)/cos
x
multiply the numerator and denominator by (1 - sin
x)
=> (1 + sin x)(1 - sin x)/(cos x)*(1 - sin
x)
=> (1 - (sin x)^2)/ (cos x)*(1 - sin
x)
=> (cos x)^2 / (cos x)*(1 - sin
x)
=> cos x / (1 - sin
x)
which is the left hand
side
This proves the identity cos(theta)/(1 -
sin(theta)) = sec(theta) + tan(theta)
No comments:
Post a Comment