Saturday, August 29, 2015

What is the simplest form of the sum 1/(1+square root 2) + 1/(square root 2+square root 3)+...........+1/(square root 2000+square root2001)?

We'll write the general term of the
sum:


1/(sqrt k +
sqrt(k+1))


We'll multiply the numerator and denominator by
the conjugate of denominator:


(sqrt k - sqrt(k+1))/[(sqrt
k)^2 - (sqrt(k+1))^2] = (sqrt k - sqrt(k+1))/(k - k -
1)


1/(sqrt k + sqrt(k+1)) = (sqrt k -
sqrt(k+1))/-1


1/(sqrt k + sqrt(k+1)) = sqrt(k+1) - sqrt
k


We'll put k=1 => 1/(1+sqrt2) = sqrt 2 -
1


We'll put k = 2=> 1/(sqrt 2+sqrt 3) = sqrt 3 -
sqrt
2


.................................................................................


We'll
put k = 2000=> 1/(sqrt 2000+sqrt 2001) = sqrt 2001 - sqrt
2000


We'll add the
terms:


1/(1+sqrt2) + ... + 1/(sqrt 2000+sqrt 2001) = sqrt 2
- 1 + sqrt 3 - sqrt 2 + ... + sqrt 2001 - sqrt 2000


We'll
eliminate like terms:


1/(1+sqrt2) + ... + 1/(sqrt 2000+sqrt
2001) = sqrt 2001 - 1


The simplest form of
the given sum is: S = sqrt 2001 - 1.

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...