We'll apply the property of integral to be
additive:
Int [3sin x- 4(tan x)^2]dx = Int 3sin x dx - Int
4(tan x)^2 dx (*)
We'll solve the first integral from the
right side:
Int 3sin dx = 3Int sin x dx= -3 cos x + C
(1)
Int 4(tan x)^2 dx = 4Int [(sec x)^2 -
1]dx
4Int [(sec x)^2 - 1]dx = 4Int (sec x)^2 dx - 4Int
dx
4Int [(sec x)^2 - 1]dx = 4 tan x - 4x + C
(2)
We'll substitute (1) and (2) in
(*):
Int [3sin x- 4(tan x)^2]dx = -3 cos x- 4 tan x + 4x +
C
The anti-derivative of the trigonometric
function 3sin x- 4(tan x)^2 is Int [3sin x- 4(tan x)^2]dx = -3 cos x- 4 tan x + 4x +
C.
No comments:
Post a Comment