Let the required square root of -7 + 24i be x +
yi
x + yi = sqrt ( -7 +
24i)
square both the sides
x^2
- y^2 + 2xyi = -7 + 24i
equate the real and complex
coefficients
x^2 - y^2 =
-7
2xy = 24
=> xy =
12
=> x =
12/y
Substitute in x^2 - y^2 =
-7
=> 12^2/y^2 - y^2 =
-7
=> 144 - y^4 + 7y^2 =
0
=> y^4 - 7y^2 - 144 =
0
let u = y^2
=> u^2 -
7u - 144 = 0
=> u^2 - 16u + 9u - 144 =
0
=> u(u - 16) + 9(u - 16) =
0
=> (u - 16)(u + 9) =
0
=> u = 16 and u =
-9
y = sqrt u is a real number so we take only u =
16.
y^2 = 16 , y = 4 and y =
-4
x = 12/y = 3 and
-3
The required value of sqrt( - 7 + 24i) =
-3 - 4i and 3 + 4i
No comments:
Post a Comment