Since the upper endpoint is infinite, you need to evaluate
the improper integral such that:
`int_0^(oo)(1/(x^2 + 1) -
C/(3x + 1)) dx = lim_(n->oo) int_0^n(1/(x^2 + 1) - C/(3x + 1)) dx`
`lim_(n->oo) int_0^n(1/(x^2 + 1) - C/(3x + 1)) dx =
lim_(n->oo)` `int_0^n 1/(x^2 + 1) dx - lim_(n->oo) int_0^n C/(3x + 1) dx`
Evaluating the definite integral `int_0^n 1/(x^2 + 1) dx`
yields:
`int_0^n 1/(x^2 + 1) dx = tan^(-1) x |_0^n`
Using he fundamental theorem of calculus
yields:
`int_0^n 1/(x^2 + 1) dx = tan^(-1) n - tan^(-1) 0`
`int_0^n 1/(x^2 + 1) dx = tan^(-1) n
`
Evaluating the definite integral `int_0^n C/(3x + 1) dx`
yields:
`int_0^n C/(3x + 1) dx = C*ln|3x + 1||_0^n`
`int_0^n C/(3x + 1) dx = C*(ln|3n + 1| - ln 1)`
Since `ln 1 = 0`
yields:
`int_0^n C/(3x + 1) dx = C*(ln|3n +
1|)`
Replasing the results `tan^(-1) n` and `C*(ln|3n +
1|)` under limits, yields:
`lim_(n->oo) int_0^n
1/(x^2 + 1) dx - lim_(n->oo) int_0^n C/(3x + 1) dx = lim_(n->oo) tan^(-1)
n - lim_(n->oo) C*(ln|3n + 1|)`
`lim_(n->oo)
int_0^n 1/(x^2 + 1) dx - lim_(n->oo) int_0^n C/(3x + 1) dx = pi/2 -
lim_(n->oo) ln(3n + 1)^C`
Since the integral
converges, hence, the limit `lim_(n->oo) ln(3n + 1)^C` needs to be finite, such
that:
`lim_(n->oo) C*(ln|3n + 1|) =
lim_(n->oo) C*(ln n*(3 + 1/n)) `
`lim_(n->oo) C*(ln n) + lim_(n->oo) C (3 +
1/n) = lim_(n->oo) C*(ln n) + 3C`
If `C = 0` ,
hence, `lim_(n->oo) C*(ln n) = lim_(n->oo) ln n^C=>
lim_(n->oo) ln n^0 = lim_(n->oo) ln 1 = 0`
Hence, evaluating C, solving the given
improper integral, under the given conditions, yields `C = 0.`
No comments:
Post a Comment