Thursday, September 12, 2013

Prove that tanA + tanB + tanC = tanA tanB tanC for any non-right angle triangle

The sum of the angles in any triangle is 180
degrees.


A+B+C = 180


A+B = 180
- C


We'll apply tangent
function:


tan (A+B) = tan (180 -
C)


We'll consider the
identity:


tan(x+y) = (tan x + tan y)/(1-tan x*tan
y)


(tan A + tan B)/(1-tan A*tan B) = (tan 180 - tan
C)/(1+tan 180*tan C)


But tan 180 = 0, therefore, we'll
get:


(tan A + tan B)/(1-tan A*tan B) = (0 - tan
C)/(1+0)


(tan A + tan B)/(1-tan A*tan B) = -tan
C


We'll multiply by (1-tan A*tan
B):


tan A + tan B = -tan C +tan A*tan B*tan
C


We'll add tan C:


tan A + tan
B+ tan C = tan A*tan B*tan C


We notice that
the given identity tan A + tan B+ tan C = tan A*tan B*tan C is
verified.

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...