The sum of the angles in any triangle is 180
degrees.
A+B+C = 180
A+B = 180
- C
We'll apply tangent
function:
tan (A+B) = tan (180 -
C)
We'll consider the
identity:
tan(x+y) = (tan x + tan y)/(1-tan x*tan
y)
(tan A + tan B)/(1-tan A*tan B) = (tan 180 - tan
C)/(1+tan 180*tan C)
But tan 180 = 0, therefore, we'll
get:
(tan A + tan B)/(1-tan A*tan B) = (0 - tan
C)/(1+0)
(tan A + tan B)/(1-tan A*tan B) = -tan
C
We'll multiply by (1-tan A*tan
B):
tan A + tan B = -tan C +tan A*tan B*tan
C
We'll add tan C:
tan A + tan
B+ tan C = tan A*tan B*tan C
We notice that
the given identity tan A + tan B+ tan C = tan A*tan B*tan C is
verified.
No comments:
Post a Comment