Saturday, October 3, 2015

Simplify the fraction [cosx*sin(2x)-2sinx]/sin^2 x*cosx=?

We have to simplify: [cos x*sin(2x) - 2 sin x]/(sin x)^2
*cos x


[cos x*sin(2x) - 2 sin x]/(sin x)^2 *cos
x


use sin 2x = 2*sin x * cos
x


=> [2*(cos x)^2 *sin x - 2 sin x]/(sin x)^2 *cos
x


=> [2*(cos x)^2 - 2]/sin x *cos
x


=> [2*(cos x)^2/ sin x*cos x] - [2/sin x *cos
x]


=> [2*cos x/ sin x] - [4/ 2*sin x*cos
x]


=> [2*cos x/ sin x] - [4/ sin
2x]


=> 2*cot x - 4*cosec
2x


The required result is 2*cot x - 4*cosec
2x

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...