If the first term is sin(x/2), then we'll use the half
angle identity:
sin(x/2) = sqrt[(1-cos
x)/2]
We'll use the double angle identity for the 2nd
term:
cos 2x = 2(cos x)^2 -
1
2sqrt[(1-cos x)/2] - 2(cos x)^2 + 1 =
1
We'll eliminate 1 both
sides:
2sqrt[(1-cos x)/2] - 2(cos x)^2 =
0
We'll divide by
2:
sqrt[(1-cos x)/2] - (cos x)^2 =
0
We'll move (cos x)^2 to the
right:
sqrt[(1-cos x)/2] = (cos
x)^2
We'll raise to
square:
(1-cos x)/2 = (cos
x)^4
1-cosx - 2(cos x)^4 =
0
We'll write 2(cos x)^4 = (cos x)^4 + (cos
x)^4
(1 - (cos x)^4) - cos x(1 + (cos x)^3) =
0
(1-cos x)(1+cos x)((1 + cos x)^4) - - cos x(1+cos x)(1 +
cos x + (cos x)^2) = 0
(1 + cos x)[(1 - cos x)(1 + (cos
x)^4) - cos x(1 + cos x + (cos x)^2)] = 0
1 + cos x =
0
cos x = -1
x =
pi
The solution of the equation in the
interval (0 , 2pi) is x = pi.
No comments:
Post a Comment