We have to prove that (4 - i*sqrt 6)/(2 - i*sqrt 6)=(sqrt
3 + 2i*sqrt 2)/(sqrt 3 + i*sqrt 2)
The left hand
side:
(4 - i*sqrt 6)/(2 - i*sqrt
6)
multiply the numerator and denominator by (2 + i*sqrt
6)
=> (4 - i*sqrt 6)*(2 + i*sqrt 6)/(2 - i*sqrt
6)*(2 + i*sqrt 6)
=> (8 + 4*i*sqtr 6 - 2*i*sqrt 6 +
6)/(4 + 6)
=> (14 + 2*i*sqtr
6)/10
=> (7 + i*sqrt
6)/5...(1)
The right hand
side:
(sqrt 3 + 2i*sqrt 2)/(sqrt 3 + i*sqrt
2)
multiply the numerator and denominator by (sqrt 3 -
i*sqrt 2)
=> (sqrt 3 + 2i*sqrt 2)*(sqrt 3 - i*sqrt
2)/(sqrt 3 + i*sqrt 2)*(sqrt 3 - i*sqrt 2)
=> (3 +
2i*sqrt 6 - i*sqrt 6 + 4) / (3 + 2)
=> (7 + i*sqrt
6)/5 ...(2)
As (1) and (2) are the same the identity is
proved.
The identity is proved
as both the sides are equal to (7 + i*sqrt
6)/5.
No comments:
Post a Comment