Thursday, June 5, 2014

What is y'' for y= (ln(5x))/x^3?

We have y = ln 5x / x^3. We have to determine
y''.


y = ln 5x / x^3 = ln 5x *
x^-3


Use the product rule


y' =
[ln 5x]' * x^-3 + ln 5x *[x^-3]'


=> y' = (5 / 5x)*
x^-3 -3*ln 5x * x^-4


=> y' = x^-4 - 3*ln 5x *
x^-4


=> x^-4( 1 - 3* ln
5x)


y'' = [x^-4]'( 1 - 3* ln 5x) + (x^-4)[1 - 3* ln
5x]'


=> y'' = -4*x^-5 * ( 1 - 3* ln 5x) + (x^-4)[-
3*5/5x]


=> y'' = -4*x^-5 * ( 1 - 3* ln 5x)
-3*(x^-5)


=> y'' = x^-5 ( -4 + 12 ln 5x -
3)


=> y'' = x^-5(12*ln 5x -
7)


The required result is y'' = (12*ln 5x -
7)/ x^5

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...