We have y = ln 5x / x^3. We have to determine
y''.
y = ln 5x / x^3 = ln 5x *
x^-3
Use the product rule
y' =
[ln 5x]' * x^-3 + ln 5x *[x^-3]'
=> y' = (5 / 5x)*
x^-3 -3*ln 5x * x^-4
=> y' = x^-4 - 3*ln 5x *
x^-4
=> x^-4( 1 - 3* ln
5x)
y'' = [x^-4]'( 1 - 3* ln 5x) + (x^-4)[1 - 3* ln
5x]'
=> y'' = -4*x^-5 * ( 1 - 3* ln 5x) + (x^-4)[-
3*5/5x]
=> y'' = -4*x^-5 * ( 1 - 3* ln 5x)
-3*(x^-5)
=> y'' = x^-5 ( -4 + 12 ln 5x -
3)
=> y'' = x^-5(12*ln 5x -
7)
The required result is y'' = (12*ln 5x -
7)/ x^5
No comments:
Post a Comment