We have to find the second derivative of y = -cos x*ln(sec
x + tan x)
We use the product rule and the chain
rule.
y' = -[cos x]'*ln(sec x + tan x) + (-cos x)*[ln(sec x
+ tan x)]'
=> sin x*ln(sec x + tan x) - cos x *(1/
(sec x + tan x))*(sec x* tan x + (sec x)^2)
=> sin
x*ln(sec x + tan x) - cos x *sec x
y'' = [sin x*ln(sec x +
tan x) - cos x *sec x]'
=> [sin x]'*ln(sec x + tan
x) + sin x *[ln (sec x + tan x)]'- cos x *[sec x]' - [cos x]'* sec
x
=> cos x*ln(sec x + tan x) + sin x*(1/ (sec x +
tan x))*(sec x* tan x + (sec x)^2) - cos x *sec x* tan x + sin x *sec
x
=> cos x*ln(sec x + tan x) + sin x*sec x - cos x
*sec x* tan x + sin x *sec x
=> cos x*ln(sec x + tan
x) + 2*sin x*sec x - cos x *sec x* tan x
The
required second derivative is cos x*ln(sec x + tan x) + 2*sin x*sec x - cos x *sec x*
tan x
No comments:
Post a Comment