Wednesday, February 10, 2016

What is the second derivative of y= -(cos x)*ln(sec x + tan x)

We have to find the second derivative of y = -cos x*ln(sec
x + tan x)


We use the product rule and the chain
rule.


y' = -[cos x]'*ln(sec x + tan x) + (-cos x)*[ln(sec x
+ tan x)]'


=> sin x*ln(sec x + tan x) - cos x *(1/
(sec x + tan x))*(sec x* tan x + (sec x)^2)


=> sin
x*ln(sec x + tan x) - cos x *sec x


y'' = [sin x*ln(sec x +
tan x) - cos x *sec x]'


=> [sin x]'*ln(sec x + tan
x) + sin x *[ln (sec x + tan x)]'- cos x *[sec x]' - [cos x]'* sec
x


=> cos x*ln(sec x + tan x) + sin x*(1/ (sec x +
tan x))*(sec x* tan x + (sec x)^2) - cos x *sec x* tan x + sin x *sec
x


=> cos x*ln(sec x + tan x) + sin x*sec x - cos x
*sec x* tan x + sin x *sec x


=> cos x*ln(sec x + tan
x) + 2*sin x*sec x - cos x *sec x* tan x


The
required second derivative is cos x*ln(sec x + tan x) + 2*sin x*sec x - cos x *sec x*
tan x

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...