We'll cross multiply the terms of the
fractions:
sin x*(sin x - cos x - 1) = (cosx +1)(1 - cos x
- sin x)
We'll remove the
brackets:
(sin x)^2 - sin x*cos x - sin x = cos x - (cos
x)^2 - sin x*cos x + 1 - cos x - sin x
We'll eliminate sin
x*cos x both sides:
(sin x)^2 - sin x = cos x - (cos x)^2
+ 1 - cos x - sin x
We'll eliminate like terms both
sides:
(sin x)^2 = - (cos x)^2 +
1
We'll add (cos x)^2 both
sides:
(sin x)^2 + (cos x)^2 =
1
From the Pythagorean identity, we know that (sin x)^2 +
(cos x)^2 = 1.
The given identity is true:
(cosx +1)/sinx = (sinx-cosx-1)/ (1-cosx-sinx).
No comments:
Post a Comment