Friday, December 4, 2015

If A = arc sin -3/5 and B = arccos 7/25 what is sin(A+B) & cos(A-B)

We'll apply the
formula:


sin(A+B) = sin A*cos B + sinB*cos
A


sin A = sin[arcsin (-3)/5] =
-3/5


cos B = cos [arccos 7/25] =
7/25


sin B = sqrt(1 - 49/625) = sqrt(576/625) =
24/25


cos A = sqrt(1 - 9/25) = sqrt(16/25) =
4/5


sin(A+B) = (-3/5)*(7/25) + (24/25)*(4/5) = (96-21)/125
= 75/125 = 3/5


We'll apply the formula for the cosine of
difference of 2 angles:


cos(A-B) = cos A*cos B + sin A*sin
B


We'll just substitute the values found out
earlier:


cos(A-B) = 4*7/5*25 +
(-3*24)/5*25


cos(A-B) = (28 - 72)/5*25 =
-44/125


The values for sin(A+B) and cos(A-B)
are: sin(A+B) = = 3/5 , cos(A-B) = -44/125.

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...