We'll apply the
formula:
sin(A+B) = sin A*cos B + sinB*cos
A
sin A = sin[arcsin (-3)/5] =
-3/5
cos B = cos [arccos 7/25] =
7/25
sin B = sqrt(1 - 49/625) = sqrt(576/625) =
24/25
cos A = sqrt(1 - 9/25) = sqrt(16/25) =
4/5
sin(A+B) = (-3/5)*(7/25) + (24/25)*(4/5) = (96-21)/125
= 75/125 = 3/5
We'll apply the formula for the cosine of
difference of 2 angles:
cos(A-B) = cos A*cos B + sin A*sin
B
We'll just substitute the values found out
earlier:
cos(A-B) = 4*7/5*25 +
(-3*24)/5*25
cos(A-B) = (28 - 72)/5*25 =
-44/125
The values for sin(A+B) and cos(A-B)
are: sin(A+B) = = 3/5 , cos(A-B) = -44/125.
No comments:
Post a Comment