Tuesday, December 29, 2015

Find dy/dx for y = ( 4x - 1)(sin3x)Step by step process

We have to find the derivative of y = ( 4x -
1)(sin3x)


y = ( 4x -
1)(sin3x)


=> y = 4x* sin 3x - sin
3x


Now use the product rules and the chain
rule


dy/dx = [4x* sin 3x]' - [sin
3x]'


=> [4x]'* sin 3x + 4x*(sin 3x)' - [sin
3x]'


=> 4*sin 3x + 4x*3*cos 3x - 3*cos
3x


=> 4*sin 3x + 3*cos 3x*(4x -
1)


The required derivative is 4*sin 3x +
3*cos 3x*(4x - 1)

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...