Saturday, January 24, 2015

Given 4cosx+2sinx=0 find tan2x

If we'll divide the constraint from enunciation by cos x,
the expression will become:


4 + 2sin x/cos x =
0


We'll subtract 4:


2sin x/cos
x = -4


sin x/cos x = -4/2


sin
x/cos x = -2


But sin x/cos x = tan
x


tan x = -2


We'll write tan
2x:


tan 2x=tan (x+x)


tan 2x =
(tan x+ tan x)/[1-(tan x)^2]


tan 2x =  2tan x/[1-(tan
x)^2]


We'll substitute tan x =
-2


tan 2x = 
2*(-2)/[1-(-2)^2]


tan 2x =
-4/(1-4)


tan 2x =
-4/-3


tan 2x =
4/3

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...