We have to solve sin 3x = sin x for 0 < x <
pi.
Use sin(A + B) = sin A cos B + cos A sin
B
sin 3x = sin (2x +
x)
=> sin 2x * cos x + cos 2x * sin
x
=> (sin x * cos x + sin x* cos x) cos x + (cos x *
cos x - sin x * sin x)*sin x
=> 2* sin x * (cos x)^2
+ (cos x)^2*sin x - (sin x)^3
=> 3*sin x * (cos x)^2
- (sin x)^3
3*sin x * (cos x)^2 - (sin x)^3 = sin
x
=> 3*(cos x)^2 - (sin x)^2 =
1
=> 3 - 3*(sin x)^2 - (sin x)^2 =
1
=> 3 - 4*(sin x)^2 =
1
=> 4*(sin x)^2 =
2
=> (sin x)^2 =
1/2
=> sin x= 1/sqrt
2
x = arc sin (1/sqrt
2)
=> x =
pi/4
The required solution is x =
pi/4
No comments:
Post a Comment