Tuesday, November 25, 2014

How to solve the equation sin 3x=sin x, if 0

We have to solve sin 3x = sin x for 0 < x <
pi.


Use sin(A + B) = sin A cos B + cos A sin
B


sin 3x = sin (2x +
x)


=> sin 2x * cos x + cos 2x * sin
x


=> (sin x * cos x + sin x* cos x) cos x + (cos x *
cos x - sin x * sin x)*sin x


=> 2* sin x * (cos x)^2
+ (cos x)^2*sin x - (sin x)^3


=> 3*sin x * (cos x)^2
- (sin x)^3


3*sin x * (cos x)^2 - (sin x)^3 = sin
x


=> 3*(cos x)^2 - (sin x)^2 =
1


=> 3 -  3*(sin x)^2 - (sin x)^2 =
1


=> 3 -  4*(sin x)^2 =
1


=> 4*(sin x)^2 =
2


=> (sin x)^2 =
1/2


=> sin x= 1/sqrt
2


x = arc sin (1/sqrt
2)


=> x =
pi/4


The required solution is x =
pi/4

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...