Given the expression:
2z ; z'
= 3+ 2i
We need to find the absolute value of
z.
First we will need to rewrite z using the form z =a+
bi
Then z' = a- bi.
Let us
substitute.
==> 2(a+bi) - (a-bi) = 3+
2i
==> 2a + 2bi - a + bi = 3+
2i
==> a + 3bi = 3+
2i
==> a = 3
==>
b= 2/3
==> z = 3 + 2/3
*i
Now we will calculate the absolute
value.
We know that:
l zl =
sqrt(a^2 + b^2)
==> l z l = sqrt(3^2 + (2/3)^2 =
sqrt( 9 + 4/9) = sqrt(85/9)
==> Then
the absolute value for z is l z l = sqrt(85/9) = sqrt(85) /
3
No comments:
Post a Comment