Tuesday, August 12, 2014

What is the inverse of the function 2x-e^2x?

We'll put f(x) = 2x -
e^2x.


According to the rule, f'(x)*[f^-1(x)]' =
1


[f^-1(x)]'= 1/f'(x)


f^-1(x)
= Indefinite Integral of 1/f'(x)


We'll calculate f'(x) =
(2x-e^2x)'


f'(x) = 2 -
2e^2x


[f^-1(x)]'= 1/(2 -
2e^2x)


We'll calculate the indefinite
integral:


Int dx/(2 - 2e^2x) = (1/2)*Int dx/(1 -
e^2x)


We'll put 1 - e^2x = t => e^2x = 1 -
t


We'll
differentiate:


2e^2x*dx =
-dt


dx = -dt/2e^2x


dx =
-dt/2(1 - t)


(1/2)*Int dx/(1 - e^2x) = (1/2)*Int -dt/2t*(1
- t)


(1/2)*Int -dt/2t*(1 - t) = (-1/4)*Int dt/t*(1 -
t)


We'll decompose the fraction 1/t*(1-t) in a sum or
difference of elementary fractions:


1/t*(1 - t) = A/t +
B/(1-t)


1 = A - At + Bt


1 =
t(B-A) + A


B-A = 0


A =
B


A = 1 => B = 1


1/t*(1
- t) = 1/t + 1/(1-t)


(-1/4)*Int dt/t*(1 - t) = (-1/4)*[Int
dt/t + Int dt/(1 - t)]


(-1/4)*Int dt/t*(1 - t) = (-1/4) [ln
|t| + ln |1 - t|]  +C


(-1/4)*Int dt/t*(1 - t) = (-1/4) ln
|t*(1-t)| + C


Int dx/(2 - 2e^2x)  = (-1/4) ln |(1 -
e^2x)*(e^2x)| + C


The inverse function is
f^-1(x) = -[ln |(1 - e^2x)*(e^2x)|]/4.

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...