We'll put f(x) = 2x -
e^2x.
According to the rule, f'(x)*[f^-1(x)]' =
1
[f^-1(x)]'= 1/f'(x)
f^-1(x)
= Indefinite Integral of 1/f'(x)
We'll calculate f'(x) =
(2x-e^2x)'
f'(x) = 2 -
2e^2x
[f^-1(x)]'= 1/(2 -
2e^2x)
We'll calculate the indefinite
integral:
Int dx/(2 - 2e^2x) = (1/2)*Int dx/(1 -
e^2x)
We'll put 1 - e^2x = t => e^2x = 1 -
t
We'll
differentiate:
2e^2x*dx =
-dt
dx = -dt/2e^2x
dx =
-dt/2(1 - t)
(1/2)*Int dx/(1 - e^2x) = (1/2)*Int -dt/2t*(1
- t)
(1/2)*Int -dt/2t*(1 - t) = (-1/4)*Int dt/t*(1 -
t)
We'll decompose the fraction 1/t*(1-t) in a sum or
difference of elementary fractions:
1/t*(1 - t) = A/t +
B/(1-t)
1 = A - At + Bt
1 =
t(B-A) + A
B-A = 0
A =
B
A = 1 => B = 1
1/t*(1
- t) = 1/t + 1/(1-t)
(-1/4)*Int dt/t*(1 - t) = (-1/4)*[Int
dt/t + Int dt/(1 - t)]
(-1/4)*Int dt/t*(1 - t) = (-1/4) [ln
|t| + ln |1 - t|] +C
(-1/4)*Int dt/t*(1 - t) = (-1/4) ln
|t*(1-t)| + C
Int dx/(2 - 2e^2x) = (-1/4) ln |(1 -
e^2x)*(e^2x)| + C
The inverse function is
f^-1(x) = -[ln |(1 - e^2x)*(e^2x)|]/4.
No comments:
Post a Comment