Sunday, August 31, 2014

Determine the antiderivative of y=sin x*cos^n x?

To determine the antiderivative of a function, we'll have
to calculate the indefinite integral of the function (cos
x)^n*sin x.


Int (cos x)^n*sin x
dx


We'll solve the indefinite integral using substitution
technique.


We'll put cos x = t
:


-sin x dx = dt


We'll raise
to n-th power cos x and the variable t:


(cos x)^n  =
t^n


We'll re-write the
integral:


-Int t^n dt = -t^(n+1)/(n+1) +
C


We'll substitute t by cos
x:


Int [(cos x)^n]*sin x dx = -(cos
x)^(n+1)/(n+1) + C

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...