We need to prove that: (tan x)^2 - (sin x)^2 = (tan x)^2
*(sin x)^2
Let's start from the left hand
side:
(tan x)^2 - (sin
x)^2
tan x = sin x / cos
x
=> (sin x)^2 / (cos x)^2 - (sin
x)^2
=> (sin x)^2 / (cos x)^2 - (sin x)^2 * (cos
x)^2 / (cos x)^2
=> [(sin x)^2 - (sin x)^2 * (cos
x)^2] / (cos x)^2
=> [(sin x)^2 * ( 1 - (cos x)^2)]
/ (cos x)^2
=> [(sin x)^2 * (sin x)^2] / (cos
x)^2
=> [(sin x)^2 / (cos x)^2] * (sin
x)^2]
=> (tan x)^2 * (sin
x)^2
This is the right hand
side.
This proves that (tan x)^2 - (sin x)^2
= (tan x)^2 *(sin x)^2
No comments:
Post a Comment