Friday, August 15, 2014

Prove that (tanx)^2-(sinx)^2=(tanx)^2(sinx)^2

We need to prove that: (tan x)^2 - (sin x)^2 = (tan x)^2
*(sin x)^2


Let's start from the left hand
side:


(tan x)^2 - (sin
x)^2


tan x = sin x / cos
x


=> (sin x)^2 / (cos x)^2 - (sin
x)^2


=> (sin x)^2 / (cos x)^2 - (sin x)^2 * (cos
x)^2 / (cos x)^2


=> [(sin x)^2 - (sin x)^2 * (cos
x)^2] / (cos x)^2


=> [(sin x)^2 * ( 1 - (cos x)^2)]
/ (cos x)^2


=> [(sin x)^2 * (sin x)^2] / (cos
x)^2


=> [(sin x)^2 / (cos x)^2] * (sin
x)^2]


=> (tan x)^2 * (sin
x)^2


This is the right hand
side.


This proves that (tan x)^2 - (sin x)^2
= (tan x)^2 *(sin x)^2

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...