We are given that x = 1 / (x - 5). We need to find x^2 -
(1/x^2)
x = 1/(x -
5)
=> x^2 - 5x =
1
=> x^2 = 1 +
5x
=> x^2 - 5x - 1 =
0
solving the quadratic equation, we get two
roots:
x1 = 5/2 + sqrt(25 +
4)/2
=> (5 + sqrt
29)/2
=> x1^2 = (25 + 29 + 10*sqrt
29)/4
x2 = (5 - sqrt
29)/2
=> x2^2 = (25 + 29 - 10*sqrt
29)/4
- x = 1/(x-
5)
=> x - 5 =
1/x
=> x = 1/x +
5
square both the
sides
=> x^2 = 1/x^2 + 25 +
10/x
=> x^2 - 1/x^2 = 25 +
10/x
25 + 10/x
for x1 = (5 +
sqrt 29)/2
=> 25 + 20/(5 + sqrt
29)
=> 25 + 20(5 - sqrt 29)/(25 -
29)
=> 25 - 5(5 - sqrt
29)
=> 25 - 25 + 5*sqrt
29
=> 5*sqrt 29
for x2
= (5 - sqrt 29)/2
=> 25 + 20/(5 - sqrt
29)
=> 25 + 20(5 + sqrt 29)/(25 -
29)
=> 25 - 5(5 + sqrt
29)
=> 25 - 25 - 5*sqrt
29
=> -5*sqrt
29
The value of x^2 - 1/x^2 is either 5*sqrt
29 or -5*sqrt 29
No comments:
Post a Comment