Friday, December 20, 2013

If x=1/(x-5),find:x^2 - 1/x^2.

We are given that x = 1 / (x - 5). We need to find x^2 -
(1/x^2)


x = 1/(x -
5)


=> x^2 - 5x =
1


=> x^2 = 1 +
5x


=> x^2 - 5x - 1 =
0


solving the quadratic equation, we get two
roots:


x1 = 5/2 + sqrt(25 +
4)/2


=> (5 + sqrt
29)/2


=> x1^2 = (25 + 29 + 10*sqrt
29)/4


x2 = (5 - sqrt
29)/2


=> x2^2 = (25 + 29 - 10*sqrt
29)/4


  • x = 1/(x-
    5)

=> x - 5 =
1/x


=> x = 1/x +
5


square both the
sides


=> x^2 = 1/x^2 + 25 +
10/x


=> x^2 - 1/x^2 = 25 +
10/x


25 + 10/x


for x1 = (5 +
sqrt 29)/2


=> 25 + 20/(5 + sqrt
29)


=> 25 + 20(5 - sqrt 29)/(25 -
29)


=> 25 - 5(5 - sqrt
29)


=> 25 - 25 + 5*sqrt
29


=> 5*sqrt 29


for x2
= (5 - sqrt 29)/2


=> 25 + 20/(5 - sqrt
29)


=> 25 + 20(5 + sqrt 29)/(25 -
29)


=> 25 - 5(5 + sqrt
29)


=> 25 - 25 - 5*sqrt
29


=> -5*sqrt
29


The value of x^2 - 1/x^2 is either 5*sqrt
29 or -5*sqrt 29

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...