We need to find the value of (-1+ i
*sqrt(3))^3 / 2
To solve this we use
(a + b)^3 = a^3 + 3a^b + 3ab^2 + b^3 and the fact that i*2 =
-1.
(-1+ i *sqrt(3))^3 /
2
=> (1/2)[ (-1)^3 + (i*sqrt 3)^3 + 3*(-1)(i*sqrt
3)^2 + 3*(-1)^2 * i*sqrt 3]
=> (1/2)[ -1 - i*3*sqrt
3 + 3*3 + 3*i*sqrt 3]
=>
(1/2)*8
=>
4
The required result is
4
No comments:
Post a Comment