We'll substitute the radicand x^2+9 by
t.
x^2+9 = t
We'll
differentiate both sides:
d(x^2+9)/dx =
dt
2xdx = dt => xdx =
dt/2
We'll solve the indefinite integral in
t:
Int x dx/sqrt(x^2+9) = Int dt/2sqrt t = (1/2)*Int
dt/t^1/2
(1/2)*Int dt/t^1/2 = (1/2)*Int
t^(-1/2)*dt
(1/2)*Int t^(-1/2)*dt = (1/2)*t^(-1/2 +
1)/(-1/2 + 1) + C
(1/2)*Int t^(-1/2)*dt = (1/2)*2t^(1/2) +
C
(1/2)*Int t^(-1/2)*dt = t^(1/2) +
C
(1/2)*Int t^(-1/2)*dt = sqrt t +
C
The indefinite integral of the given
function is: Int xdx/sqrt(x^2+9) = sqrt(x^2 + 9) +
C.
No comments:
Post a Comment