We have to prove that [(cos x)^3 - (sin x)^3]/[cos x - sin
x]= 1 + cos x * sin x
Starting with the left hand
side:
(cos x)^3 - (sin x)^3 / cos x - sin
x
use a^3 - b^3 = (a - b)(a^2 + ab +
b^2)
=> [(cos x - sin x)[(cos x)^2 + cos x * sin x +
(sin x)^2]]/( cos x - sin x)
cancel (cos x - sin
x)
=> [(cos x)^2 + cos x * sin x + (sin
x)^2]
Use (cos x)^2 + (sin x)^2 =
1
=> 1 + cos x * sin
x
This is the right hand
side.
This proves that [(cos x)^3 - (sin
x)^3]/[cos x - sin x] = 1 + cos x * sin x
No comments:
Post a Comment