We'll re-write the term (cos z)^2 = [cos
(x+y)]^2
cos (x+y) = cos x*cos y - sin x*sin
y
[cos (x+y)]^2 = (cos x*cos y - sin x*sin
y)^2
We'll expand the
square:
[cos (x+y)]^2 = (cos x*cos y)^2 + (sin x*sin y)^2 -
2sin x*sin y*cos x*cos y
We'll re-write the last term of
the givn expression:
2cosx*cosy*cosz =
2cosx*cosy*cos(x+y)
2cosx*cosy*cosz = 2cosx*cosy*(cos x*cos
y - sin x*sin y)
We'll remove the
brakets:
2cosx*cosy*cosz = 2(cos x*cos y)^2 - 2sin x*sin
y*cos x*cos y
We'll re-write the
expression:
E(x) = (cos x)^2 + (cos y)^2 + (cos x*cos y)^2
+ (sin x*sin y)^2 - 2sin x*sin y*cos x*cos y - (cos x*cos y)^2 - (cos x*cos y)^2 + 2sin
x*sin y*cos x*cos y
We'll eliminate like
terms:
E(x) = (cos x)^2 + (cos y)^2 + (sin x*sin y)^2 -
(cos x*cos y)^2
We'll use the Pythagorean
identity:
(sin x)^2 = 1 - (cos
x)^2
(sin y)^2 = 1 - (cos
y)^2
(sin x*sin y)^2 = [1 - (cos x)^2][1 - (cos
y)^2]
We'll remove the
brackets:
(sin x*sin y)^2 = 1 - (cos x)^2 - (cos y)^2 +
(cos x*cos y)^2
We'll re-write the
expression:
E(x) = (cos x)^2 + (cos y)^2 +1 - (cos x)^2 -
(cos y)^2 + (cos x*cos y)^2 - (cos x*cos y)^2
We'll
eliminate like terms:
E(x) =
1
The numerical value of the given
expression is E(x) = 1.
No comments:
Post a Comment