Let the square root of -24 + 70i be a +
ib.
(a + ib)^2 = -24 +
70i
=> a^2 - b^2 + 2abi = -24 +
70i
equating the real and complex
parts
a^2 - b^2 = -24
2ab =
70
=> ab = 35
=>
b = 35/a
substitute in a^2 - b^2 =
-24
=> a^2 - (35/a)^2 =
-24
=> a^4 - 35^2 =
-24a^2
=> a^4 + 24a^2 - 35^2 =
0
let x = a^2
=> x^2 +
24x - 35^2 = 0
=> x^2 + 49x - 25x - 1225 =
0
=> x(x + 49) - 25(x + 49) =
0
=> (x - 25)(x + 49) =
0
=> x = 25 and x =
-49
but x = a^2
a^2 = 25
=> a = 5 and -5
a^2 = -49 gives complex values of a
but a is a real number, so we ignore this root.
a = 5 , b =
35/5 = 7
a = -5 , b = 35/-5 =
-7
The required square root is 5 + 7i and -5
- 7i
No comments:
Post a Comment