Sunday, March 25, 2012

Please help me verify this identity? tan(x + pi/4) = (cosx + sinx)/(cosx - sinx)?

We have to prove that tan(x + pi/4) = (cos x + sin x)/(cos
x - sin x)


We know that tan (a + b) = [tan a + tan b]/(1 -
tan a * tan b)


tan(x +
pi/4)


=> (tan x + tan pi/4) / (1 - tan x * tan
pi/4)


tan pi/4 = 1


=>
(tan x + 1) / ( 1 - tan x)


=> [(sin x / cos x) +
1]/[1 - (sin x / cos x)]


=> [(sin x + cos x)/cos x]/
[(cos x - sin x)/cos x]


=> (sin x + cos x)/ (cos x -
sin x)


This proves that tan(x + pi/4)= (cos x
+ sin x)/(cos x - sin x)

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...