Tuesday, March 27, 2012

knowing that: sen(3π/2+x)=1/3 and x E ]π,2π[, calculate the exact value of cos (π+x) - 2cos (π/2+x)π-Pi

You need to use the following formulas to evaluate `cos
(pi+x` ) and `cos(pi/2+x) ` such that:


`cos(pi+x) = cos
pi*cos x - sin pi*sin x`


Using `cos pi = -1`  and `sin pi =
0 ` yields:


`cos(pi+x) = -cos
x`


`cos(pi/2+x) = cos (pi/2)*cos x - sin (pi/2)*sin
x`


Using `cos (pi/2) =0 ` and `sin (pi/2) =1` 
yields:


`cos(pi/2+x) = -sin
x`


Hence, `cos(pi+x) - 2cos(pi/2+x) = -cos x + 2
sinx`


The probem provides the information `sin(3pi/2 + x) =
1/3`  and `sin(3pi/2 + x) = sin 3pi/2*cos x + sin x*cos
3pi/2`


Using `cos 3pi/2 =0`  and `sin 3pi/2 =-1` 
yields:


`sin(3pi/2 + x) = -cos
x`


Hence, `-cos x = 1/3 =gt cos x = -1/3
`


Using Pythagorean's theorem
yields:



`sin x = +-sqrt(1 - cos^2
x)`


`sin x = +-sqrt(1 - 1/9) =gt sin x =
+-sqrt(8/9)`


`sin x =
+-2sqrt2/3`


The problem provides the information that `x in
[pi,2pi]` , hence, you need to use only the negative value for sin x, because the values
of sine function are negative in quadrants 3 and 4.


Hence,
`sin x = -2sqrt2/3.`


You need to substitute `-2sqrt2/3` 
for `sin x`  and `-1/3`  for `cos x`  in expression `cos(pi+x) - 2cos(pi/2+x) = -cos x +
2 sinx ` such that:


`cos(pi+x) - 2cos(pi/2+x) = -(-1/3) +
2*(-2sqrt2/3)`


`cos(pi+x) - 2cos(pi/2+x) = 1/3 -
4sqrt2/3`


Hence, evaluating the expression
`cos(pi+x) - 2cos(pi/2+x) ` under given conditions yields `cos(pi+x) - 2cos(pi/2+x) =
1/3 - 4sqrt2/3.`

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...