You need to use the following formulas to evaluate `cos
(pi+x` ) and `cos(pi/2+x) ` such that:
`cos(pi+x) = cos
pi*cos x - sin pi*sin x`
Using `cos pi = -1` and `sin pi =
0 ` yields:
`cos(pi+x) = -cos
x`
`cos(pi/2+x) = cos (pi/2)*cos x - sin (pi/2)*sin
x`
Using `cos (pi/2) =0 ` and `sin (pi/2) =1`
yields:
`cos(pi/2+x) = -sin
x`
Hence, `cos(pi+x) - 2cos(pi/2+x) = -cos x + 2
sinx`
The probem provides the information `sin(3pi/2 + x) =
1/3` and `sin(3pi/2 + x) = sin 3pi/2*cos x + sin x*cos
3pi/2`
Using `cos 3pi/2 =0` and `sin 3pi/2 =-1`
yields:
`sin(3pi/2 + x) = -cos
x`
Hence, `-cos x = 1/3 =gt cos x = -1/3
`
Using Pythagorean's theorem
yields:
`sin x = +-sqrt(1 - cos^2
x)`
`sin x = +-sqrt(1 - 1/9) =gt sin x =
+-sqrt(8/9)`
`sin x =
+-2sqrt2/3`
The problem provides the information that `x in
[pi,2pi]` , hence, you need to use only the negative value for sin x, because the values
of sine function are negative in quadrants 3 and 4.
Hence,
`sin x = -2sqrt2/3.`
You need to substitute `-2sqrt2/3`
for `sin x` and `-1/3` for `cos x` in expression `cos(pi+x) - 2cos(pi/2+x) = -cos x +
2 sinx ` such that:
`cos(pi+x) - 2cos(pi/2+x) = -(-1/3) +
2*(-2sqrt2/3)`
`cos(pi+x) - 2cos(pi/2+x) = 1/3 -
4sqrt2/3`
Hence, evaluating the expression
`cos(pi+x) - 2cos(pi/2+x) ` under given conditions yields `cos(pi+x) - 2cos(pi/2+x) =
1/3 - 4sqrt2/3.`
No comments:
Post a Comment