We'll create the remarcable
limit:
lim(1 + x)^(1/x) =
e
We'll add and subtract
1:
lim[1 + (a^x + b^x)/2 - 1]^(1/x) = lim[1+(a^x + b^x -
2)/2]^(1/x) lim{[1+(a^x + b^x - 2)/2]^[2/(a^x+b^x-2)]}^(a^x+b^x-2)/2x = e^lim
(a^x+b^x-2)/2x
We'll calculate the limit of the
superscript:
lim (a^x+b^x-2)/2x = (a^0+b^0-2)/2*0 =
0/0
We'll apply L'Hospital
rule:
lim (a^x+b^x-2)/2x = lim (a^x+b^x-2)'/(2x)' lim
(a^x+b^x-2)'/(2x)' = lim(a^x*lna + b^x*lnb)/2
We'll
substitute x by 0:
lim(a^x*lna + b^x*lnb)/2 = (a^0*lna +
b^0*lnb)/2 lim(a^x*lna + b^x*lnb)/2 = ln(a*b)/2 = ln
sqrt(a*b)
The limit of the given function is:
lim[(a^x+b^x)/2]^(1/x) = e^ln sqrt(a*b)
No comments:
Post a Comment