We'll manipulate the left side of trigonometric
identity.
We'll substitute cot B = 1/tan B and cot A =
1/tan A
We'll re-write the left
side:
(tanA+cotB)(cotA-tanB) = (tan A + 1/tan B)(1/tanA -
tan B)
We'll remove the brackets using FOIL
method:
(tan A + 1/tan B)(1/tanA - tan B) = tanA/tanA -
tanA*tanB + 1/tanA*tanB - tanB/tanB
We'll simplify, we'll
eliminate like terms and we'll get:
(tan A + 1/tan
B)(1/tanA - tan B) = 1/tanA*tanB - tanA*tanB
But
1/tanA*tanB = cotA*cotB
(tan A + 1/tan
B)(1/tanA - tan B) = cotA*cotB - tanA*tanB = RHS
No comments:
Post a Comment