Wednesday, April 16, 2014

Prove that : (tanA+cotB)(cotA-tanB)=cotAcotB-tanAtanB

We'll manipulate the left side of trigonometric
identity.


We'll substitute cot B = 1/tan B and cot A =
1/tan A


We'll re-write the left
side:


(tanA+cotB)(cotA-tanB) = (tan A + 1/tan B)(1/tanA -
tan B)


We'll remove the brackets using FOIL
method:


(tan A + 1/tan B)(1/tanA - tan B) = tanA/tanA -
tanA*tanB + 1/tanA*tanB - tanB/tanB


We'll simplify, we'll
eliminate like terms and we'll get:


(tan A + 1/tan
B)(1/tanA - tan B) = 1/tanA*tanB - tanA*tanB


But
1/tanA*tanB = cotA*cotB


(tan A + 1/tan
B)(1/tanA - tan B) = cotA*cotB - tanA*tanB = RHS

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...