Saturday, June 1, 2013

Solve the equation tan^2x=8-8secx.

We have to solve (tan x)^2 = 8 - 8*sec
x.


(tan x)^2 = 8 - 8*sec
x


=> (sin x)^2 / (cos x)^2 = 8 - 8/(cos
x)


=> (1 - (cos x)^2) / (cos x)^2 = (8*(cos x)^2 -
8* cos x)/ (cos x)^2


=> (1 - (cos x)^2) = (8*(cos
x)^2 - 8* cos x)


=> 9(cos x)^2 - 8 cos x - 1 =
0


=> 9(cos x)^2 - 9 cos x  + cos x - 1 =
0


=> 9(cos x)(cos x - 1) + 1( cos x - 1) =
0


=> (9(cos x) - 1)(cos x - 1) =
0


cos x = 1 and cos x = 1/9


x
= arc cos 1 and x = arc cos (1/9) and - arc cos
(1/9)


The required values are : x = 2*n*pi
and x = arc cos (1/9) + 2*n*pi and x = -arc cos (1/9) +
2*n*pi

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...