Friday, May 17, 2013

Find the points of intersection of the curves : (y-1)^2 = x + 7 and x^2 + (y+5)^2 = 85.

We have to find the points of intersection of (y-1)^2 = x
+ 7 and x^2 + (y+5)^2 = 85.


(y-1)^2 = x +
7


=> x = (y - 1)^2 -
7


substitute in x^2 + (y + 5)^2 =
85


((y - 1)^2 - 7)^2 + ( y + 5)^2 =
85


=> (y^2 + 1 - 2y - 7)^2 + y^2 + 25 + 10y =
85


=> (y^2 - 2y - 6)^2 + y^2 + 25 + 10y =
85


=> y^4 + 4y^2 + 36 - 4y^3 + 24y - 12y^2 + y^2 +
25 + 10y = 85


=> y^4 - 4y^3 - 7y^2 + 34y - 24 =
0


=> y^4 - 4y^3 - 7y^2 + 28y + 6y - 24 =
0


=> y^3(y - 4) - 7y(y - 4) + 6(y - 4) =
0


=> (y^3 - 7y + 6)(y - 4) =
0


=> (y^3 - 2y^2 + 2y^2 - 4y - 3y + 6)(y - 4) =
0


=> (y^2(y - 2) + 2y(y - 2) - 3(y - 2))(y - 4) =
0


=> (y - 4)(y - 2)(y^2 + 2y - 3) =
0


=> (y - 4)(y - 2)(y^2 + 3y - y - 3) =
0


=> (y - 4)(y - 2)(y(y + 3) - 1(y + 3)) =
0


=> (y - 4)(y - 2)(y - 1)(y +
3)


We get y = 4 , y = 2 , y = 1 and y =
-3


As x = y^2 - 2y - 6, the corresponding values of x
are:


x = 2 , x = -6 , -7 and x =
9


The required points of intersection of the
curves are ( 2,4), (-6,2), (-7 , 1) and ( 9, -3)

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...