The identity that has to be proved is : (tan x + 1)/(tan
x) - (sec x * csc x + 1)/(tan x + 1) = (cos x)/(sin x + cos
x).
We know that tan x = sin x / cos x , sec x = 1/cos x
and csc x = 1/sin x.
Let's start from the left hand
side:
(tan x + 1)/(tan x) - (sec x * csc x + 1)/(tan x +
1)
=> (tan x/tan x + 1/tan x) - (sec x * csc x +
1)/((sin x/cos x)+ 1)
=> (tan x/tan x + 1/tan x) -
(sec x * csc x + 1)(cos x)/(sin x + cos x)
=> (1 +
cos x /sin x) - (csc x + cos x)/(sin x + cos x)
=>
((sin x + cos x)/sin x) - ((1 + cos x * sin x)/(sin x)(sin x + cos
x)
=> ((sin x + cos x)^2 - (1 + cos x * sin x))/(sin
x)(sin x + cos x)
=> ((sin x)^2 + (cos x)^2 + 2*sin
x * cos x - 1 - cos x * sin x)/(sin x)(sin x + cos x)
Use
(sin x)^2 + (cos x)^2 = 1
=> (1 + sin x * cos x - 1
)/(sin x)(sin x + cos x)
=> (sin x * cos x)/(sin
x)(sin x + cos x)
=> (cos x)/(sin x + cos
x)
which is the right hand
side.
This proves that (tan x + 1)/(tan x) -
(sec x * csc x + 1)/(tan x + 1) = (cos x)/(sin x + cos
x)
No comments:
Post a Comment