Sunday, May 12, 2013

Prove the identity: (tanx+1)/(tanx) - (secxcscx+1)/(tanx+1) = (cos x)/(sinx +cosx)

The identity that has to be proved is : (tan x + 1)/(tan
x) - (sec x * csc x + 1)/(tan x + 1) = (cos x)/(sin x + cos
x).


We know that tan x = sin x / cos x , sec x = 1/cos x
and csc x = 1/sin x.


Let's start from the left hand
side:


(tan x + 1)/(tan x) - (sec x * csc x + 1)/(tan x +
1)


=> (tan x/tan x + 1/tan x) - (sec x * csc x +
1)/((sin x/cos x)+ 1)


=> (tan x/tan x + 1/tan x) -
(sec x * csc x + 1)(cos x)/(sin x + cos x)


=> (1 +
cos x /sin x) - (csc x + cos x)/(sin x + cos x)


=>
((sin x + cos x)/sin x) - ((1 + cos x * sin x)/(sin x)(sin x + cos
x)


=> ((sin x + cos x)^2 - (1 + cos x * sin x))/(sin
x)(sin x + cos x)


=> ((sin x)^2 + (cos x)^2 + 2*sin
x * cos x - 1 - cos x * sin x)/(sin x)(sin x + cos x)


Use
(sin x)^2 + (cos x)^2 = 1


=> (1 + sin x * cos x - 1
)/(sin x)(sin x + cos x)


=> (sin x * cos x)/(sin
x)(sin x + cos x)


=> (cos x)/(sin x + cos
x)


which is the right hand
side.


This proves that (tan x + 1)/(tan x) -
(sec x * csc x + 1)/(tan x + 1) = (cos x)/(sin x + cos
x)

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...