Thursday, March 28, 2013

Verify if (sin A + cos A)^2 + (sin A - cos A)^2 = 2?

We'll have to expand the squares, using the
formulas:


(a+b)^2 = a^2 + 2ab +
b^2


(a-b)^2 = a^2 - 2ab +
b^2


According to these formulas, we'll
get:


(sin A + cos A)^2 = (sin A)^2 + 2sinA*cosA + (cos A)^2
(1)


(sin A - cos A)^2 = (sin A)^2 - 2sinA*cosA + (cos A)^2
(2)


We'll use the Pythagorean
identity:


 (sin A)^2 + (cos A)^2 =
1


We'll add the developments (1) and
(2);


1 + 2sinA*cosA + 1
- 2sinA*cosA


We'll eliminate like
terms:


(sin A + cos A)^2 + (sin A - cos A)^2
= 1 + 1 = 2

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...