Monday, July 16, 2012

Use l'Hopital theorem to find limit of (x^2-2x-8)/(x^3+8) x--> -2

We know that l'Hospital theorem could be applied if the
limit gives an indetermination.


We'll verify if the limit
exists, for x = -2.


We'll substitute x by -2 in the
expression of the function.


lim y =
lim  (x^2-2x-8)/(x^3+8)


lim  (x^2-2x-8)/(x^3+8) = 
(4+4-8)/(-8+8) = 0/0


We've get an indetermination
case.


We'll apply L'Hospital
rule:


lim f(x)/g(x) = lim
f'(x)/g'(x)


f(x) = x^2-2x-8 => f'(x) =
2x-2


g(x) = x^3+8 => g'(x) =
3x^2


lim (x^2-2x-8)/(x^3+8) = lim
(2x-2)/3x^2


We'll substitute x by
-2:


lim (2x-2)/3x^2 =
(-4-2)/12


lim (2x-2)/3x^2 =
-6/12


lim (2x-2)/3x^2 =
-1/2


The limit of the function, for
x->-2, is: lim (x^2-2x-8)/(x^3+8) = -1/2.

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...