We have to prove that lim x-->0 [(a^x - 1)/x] = ln
a
First, if we substitute x = 0, we get the indeterminate
form 0/0. This allows the use of l"Hopital's rule and we can substitute the numerator
and the denominator by their derivatives
lim x-->0
[(a^x) * ln a ]
substitute x = 0, we get ln
a
Next we can write : a^x - 1 =
h.
=> a^x = 1 + h
=> x =
log(a) ( 1 + h )
=>x = [ln( 1 + h )]/( ln
a)
As a^x - 1 = h , x--> 0 => h -->
0
So we have lim h-->0 [h /(ln(1 + h)/ln
a)]
=> lim h-->0 [ln a/(ln(1 +
h)/h)]
=> lim h-->0 [ln a/(ln(1 +
h)^(1/h))]
=> ln a * [ 1/ lim h-->0 [(ln(1 +
h)^(1/h))]
=> ln a * ln
e
=> ln a * 1
=>
ln a
This proves lim x-->0 [(a^x -
1)/x] = ln a
No comments:
Post a Comment