Saturday, March 5, 2016

Verify if sin25+sin35=cos5

Supposing that 25,35 and 5 are degrees, we'll transform
the sum of matching trigonometric functions into a
product.


We'll use the
formula:


sin a + sin b = 2sin
[(a+b)/2]*cos[(a-b)/2]


According to this formula, we'll
obtain:


sin 25 + sin 35 = 2sin
[(25+35)/2]*cos[(25-35)/2]


sin 25 + sin 35 = 2sin
[(60)/2]*cos[(-10)/2]


sin 25 + sin 35 = 2sin
30*cos(-5)


Since the cosine function is even, we'll
get:


sin 25 + sin 35 = 2sin
30*cos(5)


But sin 30 =
1/2


sin 25 + sin 35 =
(2/2)*cos(5)


sin 25 + sin 35 = cos
5

No comments:

Post a Comment

Can (sec x - cosec x) / (tan x - cot x) be simplified further?

Given the expression ( sec x - csec x ) / (tan x - cot x) We need to simplify. We will use trigonometric identities ...