Supposing that 25,35 and 5 are degrees, we'll transform
the sum of matching trigonometric functions into a
product.
We'll use the
formula:
sin a + sin b = 2sin
[(a+b)/2]*cos[(a-b)/2]
According to this formula, we'll
obtain:
sin 25 + sin 35 = 2sin
[(25+35)/2]*cos[(25-35)/2]
sin 25 + sin 35 = 2sin
[(60)/2]*cos[(-10)/2]
sin 25 + sin 35 = 2sin
30*cos(-5)
Since the cosine function is even, we'll
get:
sin 25 + sin 35 = 2sin
30*cos(5)
But sin 30 =
1/2
sin 25 + sin 35 =
(2/2)*cos(5)
sin 25 + sin 35 = cos
5
No comments:
Post a Comment